认准「代码随想录」,学习算法不迷路!记得加个星标哦!

647. 回文子串

题目链接:

给定一个字符串,你的任务是计算这个字符串中有多少个回文子串。

具有不同开始位置或结束位置的子串,即使是由相同的字符组成,也会被视作不同的子串。

示例 1:

输入:”abc”

输出:3

解释:三个回文子串: “a”, “b”, “c”

示例 2:

输入:”aaa”

输出:6

解释:6个回文子串: “a”, “a”, “a”, “aa”, “aa”, “aaa”

提示:输入的字符串长度不会超过 1000。

暴力解法

两层for循环,遍历区间起始位置和终止位置,然后判断这个区间是不是回文。

时间复杂度:O(n^3)

动态规划

动规五部曲:

确定dp数组(dp table)以及下标的含义

布尔类型的dp[i][j]:表示区间范围[i,j] (注意是左闭右闭)的子串是否是回文子串,如果是dp[i][j]为true,否则为false。

确定递推公式

在确定递推公式时,就要分析如下几种情况。

整体上是两种,就是s[i]与s[j]相等,s[i]与s[j]不相等这两种。

当s[i]与s[j]不相等,那没啥好说的了,dp[i][j]一定是false。

当s[i]与s[j]相等时,这就复杂一些了,有如下三种情况

以上三种情况分析完了,那么递归公式如下:

if (s[i] == s[j]) {
    if (j - i <= 1) { // 情况一 和 情况二
        result++;
        dp[i][j] = true;
    } else if (dp[i + 1][j - 1]) { // 情况三
        result++;
        dp[i][j] = true;
    }
}

result就是统计回文子串的数量。

注意这里我没有列出当s[i]与s[j]不相等的时候,因为在下面dp[i][j]初始化的时候,就初始为false。

dp数组如何初始化

dp[i][j]可以初始化为true么?当然不行,怎能刚开始就全都匹配上了。

所以dp[i][j]初始化为false。

确定遍历顺序

遍历顺序可有有点讲究了。

首先从递推公式中可以看出,情况三是根据dp[i + 1][j – 1]是否为true,在对dp[i][j]进行赋值true的。

dp[i + 1][j – 1] 在 dp[i][j]的左下角,如图:

回文_回文是什么意思_回文诗

如果这矩阵是从上到下,从左到右遍历,那么会用到没有计算过的dp[i + 1][j – 1],也就是根据不确定是不是回文的区间[i+1,j-1],来判断了[i,j]是不是回文,那结果一定是不对的。

所以一定要从下到上,从左到右遍历,这样保证dp[i + 1][j – 1]都是经过计算的。

有的代码实现是优先遍历列,然后遍历行,其实也是一个道理,都是为了保证dp[i + 1][j – 1]都是经过计算的。

代码如下:

for (int i = s.size() - 1; i >= 0; i--) {  // 注意遍历顺序
    for (int j = i; j < s.size(); j++) {
        if (s[i] == s[j]) {
            if (j - i <= 1) { // 情况一 和 情况二
                result++;
                dp[i][j] = true;
            } else if (dp[i + 1][j - 1]) { // 情况三
                result++;
                dp[i][j] = true;
            }
        }
    }
}

举例推导dp数组

举例,输入:”aaa”,dp[i][j]状态如下:

回文_回文是什么意思_回文诗

图中有6个true,所以就是有6个回文子串。

注意因为dp[i][j]的定义,所以j一定是大于等于i的,那么在填充dp[i][j]的时候一定是只填充右上半部分。

以上分析完毕,C++代码如下:

class Solution {
public:
    int countSubstrings(string s) {
        vector<vector<bool>> dp(s.size(), vector<bool>(s.size(), false));
        int result = 0;
        for (int i = s.size() - 1; i >= 0; i--) {  // 注意遍历顺序
            for (int j = i; j < s.size(); j++) {
                if (s[i] == s[j]) {
                    if (j - i <= 1) { // 情况一 和 情况二
                        result++;
                        dp[i][j] = true;
                    } else if (dp[i + 1][j - 1]) { // 情况三
                        result++;
                        dp[i][j] = true;
                    }
                }
            }
        }
        return result;
    }
};

以上代码是为了凸显情况一二三,当然是可以简洁一下的,如下:

class Solution {
public:
    int countSubstrings(string s) {
        vector<vector<bool>> dp(s.size(), vector<bool>(s.size(), false));
        int result = 0;
        for (int i = s.size() - 1; i >= 0; i--) {
            for (int j = i; j < s.size(); j++) {
                if (s[i] == s[j] && (j - i <= 1 || dp[i + 1][j - 1])) {
                    result++;
                    dp[i][j] = true;
                }
            }
        }
        return result;
    }
};

双指针法

动态规划的空间复杂度是偏高的,我们再看一下双指针法。

首先确定回文串,就是找中心然后想两边扩散看是不是对称的就可以了。

在遍历中心点的时候,要注意中心点有两种情况。

一个元素可以作为中心点,两个元素也可以作为中心点。

那么有人同学问了,三个元素还可以做中心点呢。其实三个元素就可以由一个元素左右添加元素得到,四个元素则可以由两个元素左右添加元素得到。

所以我们在计算的时候,要注意一个元素为中心点和两个元素为中心点的情况。

这两种情况可以放在一起计算,但分别计算思路更清晰,我倾向于分别计算,代码如下:

class Solution {
public:
    int countSubstrings(string s) {
        int result = 0;
        for (int i = 0; i < s.size(); i++) {
            result += extend(s, i, i, s.size()); // 以i为中心 
            result += extend(s, i, i + 1, s.size()); // 以i和i+1为中心
        }
        return result;
    }
    int extend(const string& s, int i, int j, int n) {
        int res = 0;
        while (i >= 0 && j < n && s[i] == s[j]) {
            i--;
            j++;
            res++;
        }
        return res;
    }
};

——————–

最后,Carl的知识星球开通咯,不少录友问我知识星球里都有哪些内容,其实我在已经介绍啦,主要是如下几点:

找到志同道合(相同进度、相同语言等等)的录友一起在组队刷爆「代码随想录」上的算法文章。

如何准备面试,面试技巧,如何选择offer,以及职场规则 都能得到我1v1的指导和建议。

简历修改(简历发动送邮箱carl.sun@qq.com,标题备注来自星球)

分享算法知识、各种编程技巧、学习方法、个人心得、如何规划时间,以及如何锻炼健身等等。

各个大厂面试内推渠道在这里实时发布。

限 时 特 惠: 本站每日持续更新海量各大内部创业教程,一年会员只需98元,全站资源免费下载 点击查看详情
站 长 微 信: lzxmw777

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注