一、原理
基本原理
BitMap 的基本原理就是用一个 bit 来标记某个元素对应的 Value,而 Key 即是该元素。由于采用一 个bit 来存储一个数据,因此可以大大的节省空间。
我们通过一个具体的例子来说明 BitMap 的原理,假设我们要对 0-31 内的 3 个元素 (10, 17,28) 排序,那么我们就可以采用 BitMap 方法(假设这些元素没有重复)。
如下图,要表示 32 个数,我们就只需要 32 个 bit(4Bytes),首先我们开辟 4Byte 的空间,将这些空间的所有 bit 位都置为 0。
然后,我们要添加(10, 17,28) 这三个数到 BitMap 中,需要的操作就是在相应的位置上将0置为1即可。如下图,比如现在要插入 10 这个元素,只需要将蓝色的那一位变为1即可。
将这些数据插入后,假设我们想对数据进行排序或者检索数据是否存在,就可以依次遍历这个数据结构,碰到位为 1 的情况,就当这个数据存在。
字符串映射
BitMap 也可以用来表述字符串类型的数据,但是需要有一层Hash映射,如下图,通过一层映射关系,可以表述字符串是否存在。
当然这种方式会有数据碰撞的问题,但可以通过 Bloom Filter 做一些优化。
二、实现
懂原理之后,还是要写代码来加深一下理解,这里用 Python 实现一个最基本的版本。
代码用到了 bitarry 库来直接操作 bit 数组;用 hashlib 来将字符串映射到数字,以便插入 BitMap。
代码很简单,看懂上面的原理的话,很容易就看懂了代码。
三、使用
BitMap 的使用场景很广泛,比如说 Oracle、Redis 中都有用到 BitMap。当然更多的系统会有比 BitMap 稍微复杂一些的算法,比如 Bloom Filter、Counting Bloom Filter,这些会在后面逐一展开。
下面举一个在算法中用到 BitMap 来解决问题的例子。
已知某个文件内包含一些电话号码,每个号码为8位数字,统计不同号码的个数。
在这里就不再做和其它算法的对比,直接说一下 BitMap 的思路。
8 位的整数,相当于是范围在(0,99999999),也就是说 99999999 个 bit,也就是 12M 左右的内存,比起用类似 HashMap 的方式的话能节省很大的空间。 可以理解为从0 到 99999999 的数字,每个数字对应一个 Bit位,所以只需要 12M 左右的内存表示了所有的 8 位数的电话。
查询的时候就很简单了,直接统计有多少位是 1 就可以了。
四、总结
BitMap 的思想在面试的时候还是可以用来解决不少问题的,然后在很多系统中也都会用到,算是一种不错的解决问题的思路。
但是 BitMap 也有一些局限,因此会有其它一些基于 BitMap 的算法出现来解决这些问题。
算法比较成熟,因此参考的东西也挺多,就不再列参考了。
限 时 特 惠: 本站每日持续更新海量各大内部创业教程,一年会员只需98元,全站资源免费下载 点击查看详情
站 长 微 信: lzxmw777